BRIEF COMMUNICATION

Crystal Structures of Isotypical Diphosphates PbCo₃(P_2O_7)₂ and PbFe₃(P_2O_7)₂¹

A. Elmarzouki,* A. Boukhari,* A. Berrada,* and E. M. Holt†

*Laboratoire de Chimie du Solide Appliquée, Département de Chimie, Faculté des Sciences, Université Mohammed V, Avenue Ibn Batouta, Rabat, Morocco; and †Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078

Received December 14, 1994; in revised form February 3, 1995; accepted February 6, 1995

Single crystals of the mixed metal diphosphates PbCo₃(P₂O₇)₂ (I) and PbFe₃(P₂O₇)₂ (II) have been prepared by direct fusion and characterized by single-crystal X-ray diffraction, for Pb $Co_3(P_2O_7)_2(1)$, a = 7.275(5), b = 7.725(11), c = 9.511(4) Å, $\beta =$ 111.89(4)°, monoclinic space group $P2_1/c$, $V = 509.3(5) \text{ Å}^3$, $d_{\text{calc}} = 4.768 \text{ g cm}^{-3}$, Z = 2, $R/R_w = 3.9/5.1\%$ for 1192 observed reflections. For PbFe₃(P₂O₇)₂ (II), a = 7.487(1), b = 7.739(1), $c = 9.516(2) \text{ Å}, \beta = 111.95(1)^{\circ}, \text{ monoclinic space group } P2_1/c,$ $V = 511.4(2) \text{ Å}^3$, $d_{\text{calc}} = 4.693 \text{ g cm}^{-3}$, Z = 2, $R/R_w = 4.13/$ 4.87% for 1153 observed reflections. (I) and (II) are isotypical with PbNi₃(P₂O₇)₂ and SrNi₃(P₂O₇)₂. The solid lattice is characterized by layers of P₂O₇⁴⁻ groups, parallel to the crystallographic plane (001) and joined by Pb2+ and Co2+ ions in (I) and Pb2+ and Fe2+ ions in (II). Lead is seen surrounded by eight oxygen atoms whereas the transition elements are found in chains of linked trimers extending in the [010] direction [Co-Co 3.182(3) and 3.256(3) Å; Fe-Fe, 3.186(3) and 3.264 (3) Å] with distorted octahedral geometry at each metal atom. © 1995 Academic Press, Inc.

INTRODUCTION

 $A^{II}M_3^{II}(P_2O_7)_2$ (A= divalent ion) complexes are uncommon in the literature. Dindune *et al.* (1) identified Pb $Co_3(P_2O_7)_2$ and PbNi₃(P₂O₇)₂ by IR and powder diffraction. A single crystal X-ray examination of the latter has been reported by Krasnikov *et al.* (2). Preliminary examination of solid solutions of powder samples of the system $Sr_2P_2O_7-Ni_2P_2O_7$ permitted identification of

¹ See NAPS document No. 05205 for 25 pages of supplementary material. Order from ASIS/NAPS Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, NY 10163. Remit in advance \$4.00 for microfiche copy or for photocopy. \$7.75 up to 20 pages plus \$0.30 for each additional page. All orders must be prepaid. Institutions and organizations may order by purchase order. However, there is a billing and handling charge for this service of \$15. Foreign orders add \$4.50 for postage and handling, for the first 20 pages, and \$1.00 for additional 10 pages of material, \$1.50 for postage of any microfiche orders.

SrNi₃(P₂O₇)₂ (3). Structural and magnetic properties of this compound have been reported by ElBali (4). The two examples for which structural information is available, show linked trimers of *M* polyhedra which share edges. Each *M*-oxygen polyhedron shares two edges, each of them with two different metal oxygen polyhedra.

We have determined the single crystal structures of $PbCo_3(P_2O_7)_2$ and $PbFe_3(P_2O_7)_2$ in order to effect a structural comparison with the solid state forms of $PbNi_3(P_2O_7)_2$ and $SrNi_3(P_2O_7)_2$.

EXPERIMENTAL

Synthesis

Single crystals corresponding to the formula Pb $Co_3(P_2O_7)_2$ (I) (lavender) and PbFe $_3(P_2O_7)_2$ (II) (red-purple were found in products resulting from the following procedures. A mixture of $(NH_4)_2HPO_4$, PbO, and $CoCl_2 \cdot 6H_2O$ (99% pure) or FeO was ground together and heated to fusion at 1233 K (I) or 875 K (II) after prior heating to effect elimination of volatile products.

For (I), the molten mass was maintained at this temperature for 12 h and then cooled slowly (4 K/h).

For (II), a quantity of metallic iron was added to effect the reduction of Fe^{III} to Fe^{II}.

$$Pb_3Fe_2^{III}(P_2O_7)_2 + Fe^0 \rightarrow 3PbFeP_2O_7$$

The mixture was placed in a silica tube which was sealed under vacuum and heated to fusion (1223 K). The molten liquid was cooled at a rate of 4 K/h. Crystals of (I) and (II) were found in the product mixtures.

TABLE 1
Crystal Data for PbCo ₃ (P ₂ O ₇) ₂ (I) and PbFe ₃ (P ₂ O ₇) ₂ (II)

Formula	$PbCo_3(P_2O_7)_2$ (I)	$PbFe_3(P_2O_7)_2$ (II)
MWT	731.9	722.6
а	7.475(5) Å	7.487(1) Å
b	7.725(4)	7.739(1)
c	9.511(4)	9.516(2)
α	90.0°	90.0°
β	111.89(4)	111.95(0)
γ	90.0	90.0
V	509.6(5) Å ³	511.4(2) Å ³
F(000)	670	664
μΜοΚα	221.04 cm ⁻¹	213.02 cm ⁻¹
λ Μ ο <i>Κ</i> α	0.71069 Å	0.71073 Å
$D_{ m calc}$	4.768 g cm ⁻³	4.693 g cm ⁻³
Z	2	2
Space group	P2 ₁ /c	P2 ₁ /c
Obs. refl.	1192	1153
Octants meas.	$\pm h, k, l$	$\pm h, k, l$
$R/R_{\rm w}$	3.9/5.1%	4.13/4.87%
G.O.F.	1.25	1.05

X-RAY CRYSTALLOGRAPHY

Single crystals of PbCo₃(P₂O₇)₂ (I) and PbFe₃(P₂O₇)₂ (II) (0.1 × 0.1 × 0.1 mm) were mounted on a Syntex P3 (I) or Siemens P4 (II) automated diffractometer. Unit cell dimensions (Table 1) were determined by least-squares refinement of the best angular positions for 15 independent reflections ($2\theta \ge 20^{\circ}$) during normal alignment procedures using molybdenum radiation ($\lambda = 0.71069 \text{ Å (I)}$, 0.71073 Å (II)). Data (1457 (I), 1494 (II) independent points after removal of redundant and space group forbidden data) were collected at room temperature using a variable scan rate, a θ -2 θ scan mode and a scan width of 1.2° below $K\alpha_1$ and 1.2° above $K\alpha_2$ to a maximum 2θ

FIG. 1. Projection view of PbCo₃(P_2O_7)₂ on the (010) plane.

value of 60.0°. Backgrounds were measured at each side of the scan for a combined time equal to the total scan time. The intensities of three standard reflections were remeasured after every 97 reflections. The intensities of these reflections showed less than 5% variation. Data were corrected for Lorentz, polarization, centering, absorption, and background effects (5, 6). Observed reflections [1192 points $[I > 3.0\sigma(I)]$ (I); 1153 points [F > $4.0\sigma(F)$] (II)] were used for solution of heavy atom positions by direct methods using MULTAN80 (7) (I) or SHELX (II) (8). K, P and O atoms were located by a difference Fourier synthesis. Refinement ((1) (9), (11) (10)) of scale factor, positional, and anisotropic thermal parameters for these atoms was carried out to convergence. Final refinement [function minimized, $\sum (|F_o| - |F_c|)^2$] led to a final agreement factor, R = 3.9 (I), 4.13% (II) [R = $(\sum (|F_o| - |F_c|)/\sum |F_o|) \times 100]$. In the final stages of refinement a weight of $1/\sigma(F)^2$ (I), or $w^{-1} = \sigma^2(F) + 0.0008F^2$ (II) was used, $R_2 = 5.1$ (I), 4.87% (II). Corrections for anomalous scattering were made for Pb, Co, Fe, and P atoms (11).

DESCRIPTION OF THE STRUCTURE

Diphosphates $PbCo_3(P_2O_7)_2$ (I) and $PbFe_3(P_2O_7)_2$ (II) are isotypical with $PbNi_3(P_2O_7)_2$ and $SrNi_3(P_2O_7)_2$. Figure 1 shows a projection view of $PbCo_3(P_2O_7)_2$ on the (010) plane based on the positional parameters of Table 2. The positional parameters for $PbFe_3(P_2O_7)_2$ are given in Table 3. The solid lattice is characterized by layers of $P_2O_7^{4-}$ groups parallel to the crystallographic plane (001). Adjacent layers are separated by layers of metal atoms.

The transition metal ions Co^{2+} and Fe^{2+} are seen in two independent sites. M(1) in general position and M(2) on a site of inversion symmetry. Each is seen in octahedral

TABLE 2 Atomic Coordinates and Equivalent Isotropic Displacement Coefficients ($\mathring{A}^2 \times 10^3$) for PbCo₃(P₂O₇)₂ (I)

Atom	_ x	у	z	$U_{\sf eq}^*$
Pbl	0.0000	0.0000	0.5000	12.4(2)
Col	0.3142(2)	0.3753(1)	0.4716(1)	4,7(5)
Co2	0.5000	0.0000	0.5000	4.0(7)
PΙ	0.6121(3)	0.2039(3)	0.8055(2)	1.4(8)
P2	0.8959(3)	-0.0573(3)	0.7993(2)	1.6(8)
011	0.5040(9)	0.2112(8)	0.6355(6)	0,6(2)
O12	0.6541(8)	0.3759(8)	0.8870(7)	0,8(2)
O13	0.5255(8)	0.0784(8)	0.8847(7)	0.6(2)
014	0.8176(8)	0.1296(8)	0.8215(7)	0.6(2)
O21	0.8736(7)	-0.1755(7)	0.9175(6)	0.1(2)
O22	0.7678(8)	-0.1181(8)	0.6384(6)	0.4(2)
O23	1.0975(9)	-0.0188(8)	0.8087(8)	0.8(3)

Note * = $1/3(U11 + U22 + U33) \times 10^3$; × 10^4 for Co, Pb, and P.

TABLE 3
Atomic Coordinates and Equivalent Isotropic Displacement Coefficients ($\mathring{A}^2 \times 10^3$) for PbFe₃(P₂O₇)₂ (II)

Atom	x	у	z	$U_{\sf eq}^*$
Pb1	0.0000	0.0000	0.5000	17(1)
Fe1	0.3142(2)	0.1250(2)	-0.0282(1)	9(1)
Fe2	0.5000	0.0000	0.5000	8(1)
P1	0.1049(3)	0.0573(3)	0.2010(3)	11(1)
P2	0.3884(3)	-0.2037(3)	0.1945(2)	10(1)
011	-0.0987(9)	0.0192(10)	0.1918(7)	14(2)
O12	0.1261(10)	0.1761(9)	0.0825(7)	15(2)
O13	0.2283(10)	0.1163(8)	0.3612(7)	13(2)
O14	0.1833(10)	-0.1295(9)	0.1790(7)	13(2)
O21	0.3471(9)	-0.3755(8)	0.1146(7)	11(2)
O22	0.4720(10)	-0.0774(9)	0.1133(7)	13(2)
O23	0.4985(9)	-0.2119(9)	0.3656(6)	14(2)

geometry with little or no axial distortion: Co(1)-O av. 2.116(7) Å, Co(2)-O av. 2.099(6) Å (I) (Table 4) and Fe(1)-O av. 2.117(7) Å., Fe(2)-O av 2.143(7) Å (II) (Table 5). While the geometry at Co is similar to that ob-

TABLE 4
Bond Angles(*) and Distances (Å) for PbCo₃(P₂O₇)₂ (I)

Col-O11	2.097(6)	O11-P1-O12	116.2(3)
Co1-O22i	2.222(6)	O11-P1-O13	113.4(3)
Col-O13 ⁱⁱ	2.068(8)	O11-P1-O14	103.1(4)
Col-O23iii	2.093(6)	O12-P1-O13	110.7(4)
Col-O21iv	2.083(7)	O12-P1-O14	105.0(3)
Col-O13iv	2.132(6)	O13-P1-O14	107.3(3)
Co2-O22	2.146(5)	P1-O14-P2	134.4(4)
Co2-O11	2.072(6)	O21-P2-O22	110.8(3)
Co2-O22i	2.146(5)	O21-P2-O23	117.6(3)
Co2-O11i	2.072(6)	O21-P2-O14	107.5(4)
Co2-O12ii	2.079(7)	O22-P2-O23	110.9(4)
Co2-O12 ^v	2.079(7)	O22-P2-O14	106.4(3)
Pb1-O22i	2.699(7)	O23-P2-O14	102.8(4)
Pb1-O21iv	2.691(6)		
Pb1-O12 ^v	2.586(6)		
Pb1-O23 ⁱ	2.753(6)		
Pb1-O21vi	2.691(6)		
Pb1-O12vii	2.586(6)		
Pb1-O23viii	2.753(6)		
Pb1-O22viii	2.699(7)		
P1-O11	1.516(6)		
P1-O12	1.510(6)		
P1-O13	1.514(7)		
P1-O14	1.593(7)		
P2-O14	1,601(7)		
P2-O21	1.506(6)		
P2-O22	1.545(6)		
P2-O23	1.505(8)		

Note. i = 1 - x, -y, 1 - z; ii = x, 1/2 - y, -1/2 + z; iii = -1 + x, 1/2 - y, -1/2 + z; iv = 1 - x, 1/2 + y, 3/2 - z; v = 1 - x, -1/2 + y, 3/2 - z; vi = -1 + x, -1/2 - y, -1/2 + z; vii = -1 + x, 1/2 - y, 1/2 + z; viii = -1 + x, y, z.

TABLE 5
Bond Angles(°) and Distances (Å) for PbFe₃(P₂O₇)₂ (II)

2.748(7)	O11-P1-O12	117.2(4)
2.748(7)	O11-P1-O13	109.5(4)
2.690(7)	O11-P1-O14	103.0(4)
2.599(6)	O12-P1-O13	111.7(4)
2.677(8)	O12-P1-O14	107.9(4)
2.677(8)	O13-P1-O14	106.6(3)
2.690(7)	O14-P2-O21	105.2(4)
2.599(6)	O14-P2-O22	106.7(4)
2.088(8)	O14-P2-O23	103.3(4)
2.097(6)	O21-P2-O22	111.0(4)
2.079(8)	O21-P2-O23	115.4(4)
2.115(6)	O22-P2-P23	114.1(4)
2.242(6)	PI-O14-P2	134.4(5)
2.081(6)		
1.522(7)		
1.509(8)		
1.528(6)		
1.603(7)		
1.594(8)		
1.505(6)		
1.518(8)		
1.527(6)		
2.088(8)		
2.077(7)		
2.088(8)		
2.077(7)		
2.164(6)		
2.164(6)		
	2.748(7) 2.690(7) 2.599(6) 2.677(8) 2.677(8) 2.690(7) 2.599(6) 2.088(8) 2.097(6) 2.079(8) 2.115(6) 2.242(6) 2.081(6) 1.522(7) 1.509(8) 1.528(6) 1.603(7) 1.594(8) 1.505(6) 1.518(8) 1.527(6) 2.088(8) 2.077(7) 2.088(8) 2.077(7) 2.164(6)	2.748(7) O11-P1-O13 2.690(7) O11-P1-O14 2.599(6) O12-P1-O13 2.677(8) O12-P1-O14 2.677(8) O13-P1-O14 2.690(7) O14-P2-O21 2.599(6) O14-P2-O22 2.088(8) O14-P2-O23 2.097(6) O21-P2-O22 2.079(8) O21-P2-O23 2.115(6) O22-P2-P23 2.242(6) P1-O14-P2 2.081(6) 1.522(7) 1.509(8) 1.528(6) 1.603(7) 1.594(8) 1.505(6) 1.518(8) 1.527(6) 2.088(8) 2.077(7) 2.088(8) 2.077(7) 2.164(6)

Note. i = -x, -y, 1 - z; ii = -x, 1/2 + y, 1/2 - z; iii = x, 1/2 - y, 1/2 + z; iv = x, -1/2 - y, 1/2 + z; v = -x, -y, -z; vi = 1 - x, -y, -z; vii = x, 1/2 - y, -1/2 + z; viii = 1 - x, 1/2 + y, 1/2 - z; ix = 1 - x, -y, 1 - z.

served for octahedral cobalt in α -Co₂P₂O₇ (av. Co–O, 2.116(7) Å), (12) the two observations of Fe₂P₂O₇ both show one extremely long Fe–O distance and thus slightly larger averages (C1 bar, Fe–O av. 2.180(4); P1, Fe–O av. 2.158(9) and 2.206(9) Å) (13, 14).

Figure 2 shows a projection view of Co2+ cations and associated oxygen atoms of the unit cell of PbCo₃(P₂O₇), on the (100) plane. Transition metals are observed in chains of trimers parallel to the [010] direction. M(2) occupies the central position in each trimeric series, M1-M2-M1. The angle at M2 is constrained by symmetry to 180°. The angles at M1 (M2-M1-M1) are 101.9° and 102.0°, respectively. Within each trimer Co-Co separations are 3.182 Å. Co-Co distances between trimers are 3.256 Å [comparable Fe-Fe distances are 3.186 and 3.264 Å, respectively]. Successive metal atoms are bridged by two oxygen atoms and may thus be viewed as adjacent MO₆ octahedra sharing an edge. The structures of Pb $Co_3(P_2O_7)_2$ (I) and $PbFe_3(P_2O_7)_2$ (II) are consistent with those of others of the family, $A^{II}M_3^{II}(P_2O_7)_2$, showing each M atom to share edges with two adjacent M atoms.

FIG. 2. View of linked trimers of PbCo₃(P₂O₇)₂.

Such trimers have been observed elsewhere in the literature other than in compounds of type $A^{II}M_3^{II}(P_2O_7)_2$ (A = divalent ion). $K_6Sr_2Ni_5(P_2O_7)_5$ crystallizes with a similar disposition of linked trimers composed of successive edge-sharing polyhedra (M-M, 3.018 Å within the trimer and 3.008 Å between trimers. The M-M-M angle within the trimer is 180° and that between ends of trimers is 105.73°. There is also an isolated Ni²⁺ in the unit cell (15).

Co₃(PO₄)₂ (16) and high-temperature Mg₃(PO₄)₂ (17) show a similar disposition of edge-sharing metal octahedra, Co-Co 3.151 Å within the trimeric unit and 3.033 Å between trimers (Co-Co-Co angle 123.33°, Mg-Mg 3.076 Å within the trimer and 2.920 Å between trimers) (Mg-Mg-Mg, ends of trimers, av. 127.5°). While Mg is not a transition element, its structural behavior is similar to that of elements of the 3d series.

Isolated trimers of metal atoms have been seen in Ni₃(PO₄)₂ (Ni-Ni 3.184 Å) (18) and Fe₃(P₂O₇)₂ [Fe^{III}Fe^{II}_{0.5}P₂O₇] (19), in which isolated trimers (Fe^{III} – Fe^{III}) composed of octahedrally coordinated Fe³⁺ atoms which share a face with the trigonal prismatic central Fe²⁺ position (Fe-Fe distances 2.924(1) Å).

Pb²⁺ ions in (I) and (II) are found on sites of inversion symmetry and are eight coordinate with dicapped square bipyramidal geometry. Pb-O distances average 2.682(6)

Å (I) and 2.678(7) Å (II). These values are similar to the value of 2.662(6) Å observed in PbNi₃(P_2O_7)₂ (20).

P-O-P angles in $P_2O_7^{4-}$ groups are 134.4(4)° (I) and 134.4(5)° in (II). P-O distances range from 1.505(8)-1.601(7) Å in (I) and 1.505(8)-1.603(7) Å in (II). These values are compatible with those seen in other diphosphates. $P_2O_7^{4-}$ groups are seen in nearly eclipsed conformation.

ACKNOWLEDGMENTS

The authors express their thanks to the National Science Foundation for a grant to permit collaborative work and to the Moroccan-American Commission for Fulbright grants to E.M.H.

REFERENCES

- A. Dindune, V. V. Krasnikov, and Z. A. Konstant, Izv. Akad. Nauk. SSSR Neorg. Mater. 20(9), 1553 (1984).
- V. V. Krasnikov, Z. A. Konstant, and V. K. Bel'Skii, *Izv. Akad. Nauk. SSSR Neorg. Mater.* 21 (9), 1560 (1985).
- B. Elbali, "Thése d'État." Université Mohammed V, Rabat, Maroc, 1993.
- 4. B. ElBali, A. Boukhari, J. Aride, and F. Abraham, manuscript in preparation.
- 5. R. H. Blessing, Crystallogr. Rev. 1, 358 (1986).
- "XSCANS: X-Ray Single Crystal Analysis System," Siemens (1991).
- P. Main, S. J. Fiske, S. E. Hull, L. Lessigner, G. Germain, J. P. Declerg, and M. M. Woolfson, University of York, England (1980).
- 8. G. M. Sheldrick, Acta, Crystallogr. A 46, 467 (1990).
- J. M. Stewart, Ed., "The X-Ray System-Version of 1980." Technical Report TR 446 of the Computer Center, University of Maryland, College Park, Maryland.
- 10. G. M. Sheldrick, in preparation.
- J. Ibers and W. C. Hamilton, "International Tables for X-Ray Crystallography," Vol. IV. Kynoch Press, Birmingham, 1984.
- N. Krishanamachari and C. Calvo, Acta Crystallogr. B 28, 2883 (1972).
- J. T. Hoggins, J. S. Swinnea, and H. Steinfink, J. Solid State Chem. 47, 278 (1983).
- 14. T. Stefanidis and A. G. Nord, Z. Kristallogr. 159, 255 (1982).
- A. ElMaadi, A. Boukhari, and E. M. Holt, J. Chem. Cryst., in press.
- J. B. Anderson, E. Kostiner, M. C. Miller, and J. R. Rea, J. Solid State. Chem. 14, 372 (1975).
- A. G. Nord and P. Kierkegaard, Acta Chem. Scand. 22, 1466 (1968).
- 18. C. Calvo and R. Faggiani, Can. J. Chem. 53, 1516 (1975).
- M. Ijjaali, G. Venturini, R. Gerandin, B. Malaman, and C. Gleitzer, Eur. J. Solid State Inorg. Chem. 28, 932 (1991).
- 20. B. E. Robertson and C. Calvo, Acta Crystallogr. 22, 665 (1967).